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Introduction

• FEA Concept
• Get Away Special (GAS)
• FEA Project Outline

– Requirements
– Implementation
– System Architecture

• Student Involvement
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FEA Concept/Physics

• Cold Cathode Electron Emission
– No gas sources as with a plasma 

contactor
– No heaters

• Bias voltage between gate and 
tip pair (50-100V)

• Each tip gets ~1 µA current, 
arrays capable of A/cm2

• Low Power, inexpensive
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Electrodynamic Tether Propulsion

Electrons emitted at the lower spacecraft diffuse into the ionosphere. 
Other electrons are collected at the upper spacecraft.

Electron flow paths 
shown are for a de-orbit 

scenario.
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Why the shuttle?

• Advantages of the shuttle
– Large electron collection surfaces (engine bells)

• Eliminates system charging (just like a tether)

– LEO environment
– Return of payload, reusability

• Analyze contamination effects
• Analyze degradation (AO, etc.)

• Get Away Special (G-187)
– Part of small shuttle payload program
– Standard support (GSFC, Wallops)
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Mission Requirements

• Mission Statement
– To evaluate and demonstrate reliable cold 

cathode electron emission in a spacecraft 
environment.

• Driving Questions
– What handling procedures are required to 

protect FEA devices from pre-launch to orbit?
– What procedure should be used to most reliably  

initiate and maintain FEA operation on orbit?
– What environmental and spacecraft conditions 

affect performance?
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Required Measurements/Information
• Operational Capabilities

– Up to +/- 1000V gate and/or tip bias capability, both DC and pulse 
mode.

– Bias gate and tip together for electron bombardment cleaning
– Transient bias contaminant clearing capability

• FEA Monitoring Measurements
– Gate and tip potential
– Gate and tip current
– Return currents and energy of electrons to faceplate

• Environmental data
– Neutral pressure
– Plasma density and temperature near emitters
– Magnetic field
– Spacecraft effluents (shuttle water dump, etc.)
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Implementation

GAS Provided Motorized Door

LP

EA

PS

SVPE

Battery Box
Electronic Stack

Proposed FEAC Configuration
• FEAs, 9 devices in 3 separate small 

vacuum protective enclosures (SVPEs)
– Redundancy
– Test multiple FEA designs
– Provide different exposure times and/or 

cleaning protocols to identical devices

• Environmental Measurements
– Langmuir probe (LP)
– Electrostatic analyzer (EA)
– Pressure sensor (PS)

• Support Equipment
– On-board automated experiment control 

and data storage
– Custom variable power supplies

• Utilize shuttle data stream
– orbital position, orientation (ram/wake), 

thruster, FES, and water dumps, etc.

SVPE
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FEA 1

Block Diagram
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Top-Level Mission Timeline

• Brief thermionic emission at beginning
– High reliability
– Baseline of emission capability and 

environmental interaction
• FEA cathodes (e.g. Spindt devices)

– Baseline FEA technology (UofM/JPL experience)
– Variety of biases, cleaning procedures, etc.
– One continously running for long term tests

• Other FEA technologies
• Combinations of emitters simultaneously
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System Architecture
• Payload

– Electron emitters (FEA, thermionic)
– Environmental instrumentation (pressure, LP, MESA)

• Power & Electrical
– Power distribution system for payload and computer
– Experiment measurements of voltages and currents
– Housekeeping measurements of voltages, currents, and 

temperatures
• Command & Data Handling

– Experiment control
– Data storage

• Structures
– Mechanical
– Thermal
– Safety
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FEGI Payload

• FEA
– Heatwave Labs thermionic cathode
– SRI Spindt-type cathodes, Michigan Si-tip cathodes
– Developing technologies

• MCNC, SPEEDG, carbon nanotubes, diamond or BN tip

• Electrostatic analyzer (MESA-U.S. Air Force)
– Plasma potential relative to Shuttle ground
– Return electron energy

• Langmuir probe (UM)
– Plasma density and temperature 
– Plasma potential relative to Shuttle ground

• Pressure sensor (PSU)
– Neutral pressure
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Power & Electrical

• Power distribution system
– NASA interface
– Battery box
– Voltage Converters

• FEA biasing
– Variable up to +/- 1000 V DC, 5V resolution

• Health and data measurements
– Voltage
– Current
– Temperature

• Heaters
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Command & Data Handling

• Processing 
– Motorola MPC555 Microcontroller / PowerPC 

architecture
– Xilinx FPGA to handle custom interface work
– Maximum 8kHz burst (200 B samples) over 

system bus

• Data storage
– IBM microdrive (5x1 GB)/ Toshiba 1.8” (5 GB)
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Structures

• Structural design
– Framework
– Experiment faceplate
– Small Vacuum Protective Enclosures (SVPE)
– Testing (structural and vibrations)

• Thermal
– Nodal analysis
– Heater requirements

• Safety
– Pressure vessels
– Fracture Control
– Containment
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Student Involvement

• Multi-university collaboration
– University of Michigan
– Penn State University
– Air Force Academy

• Student Space System Fabrication Lab (S3FL)
– Flight and prototyping labs providing students with hands-on 

experience
– Graduate and Undergraduate Students

• Aero, EE, CompE, ME, IOE, AOSS, Engineering Physics

• Faculty and Staff Engineering Mentorship
– Faculty Principal Investigator
– Engineering mentors from Space Physics Research Laboratory (SPRL)
– Faculty Technology Advisors
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Conclusion

• FEA Concept
• Get Away Special (GAS)
• FEA Project Outline

– Requirements
– Implementation
– System Architecture

• Student Involvement


